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In this paper, we study the extent to which CP parity of a Higgs boson, and more generally
its anomalous couplings to gauge bosons, can be measured at the LHC and a future electron-
positron collider. We consider several processes, including Higgs boson production in gluon and
weak boson fusion and production of a Higgs boson in association with an electroweak gauge boson.
We consider decays of a Higgs boson including ZZ,WW,γγ, and Zγ. A matrix element approach to
three production and decay topologies is developed and applied in the analysis. A complete Monte
Carlo simulation of the above processes at proton and e+e− colliders is performed and verified by
comparing it to an analytic calculation. Prospects for measuring various tensor couplings at existing
and proposed facilities are compared.

PACS numbers: 12.60.-i, 13.88.+e, 14.80.Bn

I. INTRODUCTION

The existence of a Higgs boson with the mass around 125 GeV has now been firmly established by the ATLAS and
CMS experiments at the Large Hadron Collider [1, 2] with supporting evidence from the Tevatron experiments [3].
However, detailed understanding of the properties of this particle will require an array of precision measurements
of Higgs boson production and decay processes. The purpose of this paper is to present a coherent framework for
studying anomalous couplings of a Higgs boson in processes which involve its interactions with weak vector bosons,
photons, and gluons. We develop tools for measuring the anomalous couplings and compare the expected sensitivity
in different modes at existing and planned experimental facilities.
Several facts about Higgs boson spin, parity, and its couplings have already been established. The new boson cannot

have spin one because it decays to two on-shell photons [4]. The spin-one assignment is also strongly disfavored by
the measurement of angular distributions in H → ZZ decays [5, 6]. Under the assumption of minimal coupling to
vector bosons or fermions, the new boson is unlikely to be a spin-two particle [5, 6]. The spin-zero, negative parity
hypothesis is also strongly disfavored [5, 6]. Therefore, the new particle appears to be predominantly a J CP = 0++

state whose couplings to gauge bosons may, however, have small anomalous components. Constraining and possibly
measuring these anomalous couplings will require an extensive experimental program.
The basic idea behind any spin-parity measurement is that different spin-parity assignments restrict the allowed

types of interactions between the Higgs boson and other particles. This feature manifests itself in various kinematic
distributions of either the decay products of the Higgs particle or particles produced in association with it. There are
three processes that can be used to determine the Lorentz structure of the HV V interaction vertex, where V stands
for a vector boson Z,W, γ, g, cf. Figs. 1, 2. They are

• production of a Higgs boson (in any process) followed by its decay to two vector bosons followed by a decay
to fermions, such as H → ZZ,WW → 4f , H → Zγ → 2fγ, see left panels in Figs. 1, 2, where definition of
kinematic observables through the particle momenta can be found in Refs. [7, 8];

• production of Z∗(W ∗) followed by its decay into Z or W and a Higgs boson. The Higgs boson then decays into
any final state, see middle panels in Figs. 1, 2;

• production of a Higgs boson in association with two jets in weak boson fusion or gluon fusion, followed by the
Higgs boson decay into any final state, see right panels in Figs. 1, 2.

Many of these processes were already studied from the point of view of spin-parity determination [7–36]. The goal of
this paper is to combine all these studies into a single framework and estimate the ultimate sensitivity to anomalous
couplings that can be reached at the LHC and future lepton colliders.
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FIG. 1: Illustrations of H particle production and decay in pp or e+e− collision gg/qq̄ → H → ZZ → 4ℓ± (left), e+e−(qq̄) →
Z∗ → ZH → ℓ+ℓ−bb̄ (middle), or e+e−(qq′) → e+e−(qq′)H → e+e−(qq′)bb̄ (right). The H → bb̄ decay and HZZ coupling are
shown as examples, so that Z can be substituted by other vector bosons. Five angles fully characterize the orientation of the
production and decay chain and are defined in the suitable rest frames.
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FIG. 2: Illustration of an effective HV V coupling, where V = Z,W, γ, g with H decay to two vector bosons (left), associated
H production with a vector boson (middle), and vector boson fusion (right).

We build upon our previous analysis of this problem described in Refs. [7, 8]. Techniques developed there are
well-suited for measuring HV V anomalous couplings since these couplings affect angular and mass distributions and
can be constrained by fitting observed distributions to theory predictions. However, such multi-parameter fits require
large samples of signal events that are currently not available. Nevertheless, it is interesting to study the ultimate
precision on anomalous couplings that can be achieved at the LHC and a future lepton collider since the expected
number of events can be easily estimated.
We organize the rest of the paper as follows. In Sec. II we briefly review parameterization of the HV V vertex.

In Sec. III we discuss Monte Carlo (MC) and likelihood techniques, since they provide the necessary tools for the
experimental studies. In Sec. IV we explore various approaches to anomalous couplings measurements and summarize
the precision that is achievable at different facilities. We conclude in Sec. V. Additional details, including discussion
of the matrix element method and methodology of the analysis, can be found in Appendices.

II. PARAMETRIZATION OF THE SCATTERING AMPLITUDES

Studies of spin, parity, and couplings of a Higgs boson employ generic parameterizations of scattering amplitudes.
Such parameterizations contain all possible tensor structures consistent with assumed symmetries and Lorentz invari-
ance. We follow the notation of Refs. [7, 8] and write the general scattering amplitude that describes interactions of
a spin-zero boson with the gauge bosons, such as ZZ, WW , Zγ, γγ, or gg

A(XJ=0 → V V ) =
1

v

(

g1m
2
V
ǫ∗1ǫ

∗
2 + g2f

∗(1)
µν f∗(2),µν + g4f

∗(1)
µν f̃∗(2),µν

)

. (1)

In Eq. (1), f (i),µν = ǫµi q
ν
i − ǫνi q

µ
i is the field strength tensor of a gauge boson with momentum qi and polarization

vector ǫi; f̃ (i),µν = 1/2ǫµναβfαβ is the conjugate field strength tensor. Parity-conserving interactions of a scalar
(pseudo-scalar) are parameterized by the couplings g1,2(g4), respectively. In the Standard Model (SM), the only non-
vanishing coupling of the Higgs to ZZ or WW bosons at tree-level is g1 = 2i, while g2 is generated through radiative
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corrections. For final states with at least one massless gauge boson, such as γγ, gg or Zγ, the SM interactions with
the Higgs boson are loop-induced; these interactions are described by the coupling g2.
In Refs. [7, 8] it was shown that an additional g3 term in Eq. (1) can be absorbed into the “constant” g2 if the

coupling constants in Eq. (1) are treated as momentum-dependent form factors. This is a general feature and we
illustrate it with examples shown below. Consider the following addition to the amplitude1 A(XJ=0 → V V )

1

vΛ2
f∗(1),µνf∗(2)

µα (g3q2νq
α
1 + g32q1νq

α
1 + g33q2νq

α
2 + g34q1νq

α
2 ) +

1

v

(

g35f
∗(1),µνq1µǫ

∗
2ν + g36f

∗(2),µνq2µǫ
∗
1ν

)

, (2)

where for identical vector bosons g32 = g33 and g35 = g36. Using the definition of the field strength tensor and
ǫi · qi = 0, we find that all terms in Eq. (2) can be desribed by Lorentz structures in Eq. (1) provided that g1 and g2
are modified as

g1 →
(

g1 − g35
m2

1

m2
V

− g36
m2

2

m2
V

+ g34
m2

1m
2
2

m2
V
Λ2

)

, g2 →
(

g2 + g3
m2

X
−m2

1 −m2
2

4Λ2
+ g32

m2
1

2Λ2
+ g33

m2
2

2Λ2

)

. (3)

In this paper, we focus on the determination of anomalous couplings of the predominantly J CP = 0++ Higgs-like
boson to SM gauge bosons since existing experimental data already disfavors other exotic spin-parity assignments [5, 6].
For HZZ or HWW vertices, we therefore assume that the coupling constants satisfy a hierarchical relation g1 ≫ g2,4
and that non-standard couplings always provide small modifications of the SM contributions.
It is convenient to express the results of the measurement of the anomalous couplings in terms of physical quantities.

To this end, we consider three independent, and generally complex, couplings g1, g2, and g4 for each of the vector
bosons Z, γ,W, g. Assuming no q2-dependence, five independent numbers are needed to parameterize the couplings
since one overall complex phase is not measurable. We take one of these numbers to be the H → V V decay rate; the
remaining four real numbers parameterize ratios of couplings and their relative phases. We find it convenient to use
effective fractions of events defined as

fgi =
|gi|2σi

|g1|2σ1 + |g2|2σ2 + |g4|2σ4
, (4)

to parameterize coupling ratios. The phases are defined as φgi = arg (gi/g1). For real couplings, φgi = 0 or π.
Complex couplings may appear if light particles contribute to the loops, as very small anomalous complex couplings
in fact may appear in the Standard Model. Even under assumption of real constant couplings, as in an Effective
Lagrangian framework, it is of interest to test consistency of the model by relaxing both real and momentum-
independent requirements on the couplings.
We note that σi in Eq. (4) is the cross section for the process H → V V , V ∗ → V H , or V ∗V ∗ → H that corresponds

to gi = 1, gj 6=i = 0. The advantage of introducing fractions fgi is that, for fixed tensorial structure of the HV V
vertex, they are invariant under independent re-scalings of all couplings. They may also be interpreted as fractions of
event yields corresponding to each anomalous coupling independently. Contributions that originate from interferences
of different amplitudes can be described using parameterization introduced above; for this, both fractions fgi and
phases φgi are required. Once fractions fgi are measured, one can extract the coupling constants in a straightforward

way by inverting Eq. (4), e.g. |gi/g1| = (fgi/(1 −
∑

k fgk))
1/2 × (σ1/σi)

1/2. The parameter fg4 is equivalent to the
parameter fa3 as introduced by the CMS collaboration [5] under the assumption g2 = 0; it is the fraction of a CP -odd
contribution to the total production cross section of a Higgs boson. For the ease of comparison with earlier CMS
studies, we will use fa2 and fa3 instead of fg2 and fg4, respectively, to denote event fractions throughout the paper.
The fdec

a2 and fdec
a3 values correspond to cross sections defined in decay H → V V .

The above discussion is well-suited in case when effective couplings can be treated as q2-independent constants.
However, it may also be desirable to treat these couplings as functions of invariant masses of gauge bosons q21,2 and
we show how to do this in the next section. However, we do not pursue such a general analysis in this paper. Instead,
we focus on the lowest-order modification to HV V interaction vertex caused by each of the anomalous couplings.
This means that we treat g2 and g4 as q2-independent constants but account for q2-dependent correction to g1. The
parametrization of this correction is described in detail below; here, we just mention that the new contribution is
treated as yet another anomalous coupling to which the construction of effecitve event fractions Eq. (4) is applied.

1 A “derivative operator” introduced in Ref. [32] is equivalent to the g35 and g36 terms in Eq. (2).
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III. ANALYSIS TOOLS

Analyses reported in this paper require a simulation program to describe production of resonances in hadron-hadron
or e+e− collisions, followed by their subsequent decays. Anomalous couplings to vector bosons must be included. The
simulation program is supplemented by both analytical and numerical calculations of the likelihood distributions
based on the matrix element method. These analysis tools are described in this section. Additional details can be
found in Appendices.
Events are simulated with the JHU generator [7, 8, 37], a dedicated Monte Carlo program, that features implemen-

tations of the processes gg/qq̄ → X → ZZ(WW ) → 4f as well as gg/qq̄ → X → γγ. The JHU generator incorporates
all spin correlations, interference of all contributing amplitudes, and the general couplings of the X particle to gluons
and quarks in production and to vector bosons in decay. New features of the JHU generator, implemented since the
last release, are summarized below.
The JHU generator has been extended to include new processes: associated production of a Higgs boson in either

proton or electron collisions qq̄′ → V ∗ → V H , e+e− → Z∗ → ZH , and associated production with two jets from
either gluon fusion gg → H + 2 jets or weak boson fusion qq′ → qq′V ∗V ∗ → Hqq′, where V = Z,W . In all cases,
parameterization of the HV V vertex with all anomalous couplings as in Eq. (1) is included. Extension to other spin
assignments of an exotic boson following formalism in Refs. [7, 8] is also available for some of these processes, but
it is not the focus of the study presented here. We also introduce the decay mode H → Zγ. In both H → ZZ
and Zγ decays we allow Z∗/γ∗ interference covering the intermediate states H → Z∗Z∗/Z∗γ∗/γ∗γ∗ → 4f and
H → Z∗γ/γ∗γ → 2fγ.
Another feature of the generator implemented recently concerns the dependence of the effective coupling constants

g1...4 on the virtualities of two vector bosons, cf. Eq. (1). To describe this effect, we parameterize the couplings as

gi(q
2
1 , q

2
2) = gSMi + g′i ×

Λ4
i

(Λ2
i + |q21 |) (Λ2

i + |q22 |))
, (5)

where Λi is the energy scale that is correlated with masses of new, yet unobserved, particles that contribute to HV V
interaction vertex and gSMi = g1 · δi1 appears at tree level in the coupling of a Higgs boson to weak vector bosons in
the Standard Model. Although we do not use this feature of the generator in the current paper, we expect that it will
be helpful for checking the sensitivity of various observables employed for spin-parity analysis to high-energy or high
invariant-mass tails of kinematic distributions that may be affected by poorly controlled form-factor effects. In case
when form-factor scales Λi are much higher than any of the kinematic invariants in the physics process of interest,
the form-factors can be expanded into series of q2/Λ2

i , enabling a connection to the effective field theory approach
to Higgs couplings determination. The option to describe effective couplings as series in q2/Λ2 is available in JHU
generator as an alternative to Eq.(5). We illustrate the usefulness of this feature by considering modifications of the
g1 coupling, g1 → (g1 − g′′1 × (q21 + q22)/Λ

2
1).

The generator program can be interfaced to parton shower simulation as well as full detector simulation through
the Les Houches Event (LHE) file format [38]. The JHU generator now also allows interfacing the decay of a spin-zero
particle with the production simulated by other MC programs, or by the JHU generator itself, through the LHE file
format. This option allows us to combine modeling of the next-to-leading-order (NLO) QCD effects in the production
of a 0+ particle with the description of its decays that includes both anomalous couplings and interference effects of
identical fermions in the final state.
Apart from simulating events, our analysis requires the construction of various likelihood functions to distinguish

between different hypotheses about the Lorentz structure of the HV V interaction vertex. As described in Appendix A,
the likelihood functions are obtained from kinematic probability distributions that can be either computed analytically
or numerically. Analytical parameterizations are currently available for the H → V V , pp → V H , and e+e− → ZH
processes, see Appendix A and Refs. [7, 8]. Numerical computations of matrix elements are provided by the JHU

generator. These matrix elements are also needed to compute cross sections and kinematics distributions. The
matrix elements are implemented in the JHU generator as separate functions [8] and can be accessed by an end-user
directly. We provide the necessary codes to compute the likelihood functions using both analytic and numerical
parameterizations of the matrix elements [37].
The availability of the two methods allows independent validation of the same analysis. Results presented in this

paper employ analytic parameterization of the probabilities when available. This allows analytic normalization of
the probability distributions to facilitate multi-dimensional and multi-parameter fits. When analytic results are not
available, we use numerical computations of the matrix element squared.
Examples of both analytical and generator distributions are shown in Fig. 3 for the e+e− → ZH → (ℓ+ℓ−)H

process. More examples are available in Refs. [7, 8] for decay processes and in Appendix A for the production and
decay processes at the LHC. Examples of analyses based on the implementation of the matrix element techniques are
given in Appendix B. We will use the distributions in Fig. 3 to explain some results obtained in the next section.
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FIG. 3: Distributions of the observables in the e+e− → ZH → (ℓ+ℓ−)H analysis at
√
s = 250 GeV, from left to right: cos θ1,

cos θ2, and Φ. Points show simulated events and lines show projections of analytical distributions. Four scenarios are shown:
SM scalar (0+, red open circles), pseudoscalar (0−, blue diamonds), and two mixed states corresponding to fa3 = 0.5 with
φa3 = 0 (green squares) and π/2 (magenta points). In all cases we choose fa2 = 0.

IV. MEASUREMENTS OF HV V ANOMALOUS COUPLINGS

In this section we describe prospects for measuring the anomalous HV V couplings both at the LHC and at a
future e+e− collider. We consider all types of processes that allow such measurements, including gluon fusion at LHC
(SBF), weak boson fusion (WBF), and V H production. For the analysis of the Higgs boson decay H → V V , all
production mechanisms can be combined. The cleanest and most significant SM Higgs boson decay mode at the LHC
is H → ZZ∗ → 4ℓ and we consider this mode in the following analysis [5, 6]. The decay H → WW ∗ → 2ℓ2ν can also
be used for anomalous coupling measurements, as demonstrated in Ref. [8], but precision of spin-zero measurements
is lower. Inclusion of other decay modes will only improve estimated precision and we examine such examples as
well (H → γγ in VBF and H → bb̄ in V H production). At an e+e− collider, we consider the dominant decay mode
H → bb̄, but other final states could be considered as well.
We now discuss details of event simulation and selection. In this paper, signal events were simulated with the JHU

generator. Background events were generated with POWHEG [39] (qq̄ → ZZ(∗)/Zγ(∗) + jets) and MadGraph [40]
(qq̄ → ZZ(∗)/Zγ(∗)/γγ + 0 or 2 jets, e+e− → ZZ). When backgrounds from other processes are expected, their
effective contribution is included by rescaling the expected event yields of the aforementioned processes. The vector
boson fusion (VBF) and V H topology of the SM Higgs boson production has been tested against POWHEG, see Fig. 4,
as well as against VBF@NLO [41–43] and MadGraph simulation, respectively.
To properly simulate recoil of the final state particles caused by QCD radiation, we interface the JHU generator

with parton shower in Pythia [44], or, alternatively, simulate the decay of the Higgs boson with the JHU generator and
production of the Higgs boson through NLO QCD accuracy with POWHEG. We point out that this way of interfacing
POWHEG and JHU generator is exact for spin-zero particle production since no spin correlations connect initial and
final states. We note that quality of the approximation with Pythia parton showering is surprisingly high as can be
seen in Fig. 4 where we compare the transverse momentum distribution of a Standard Model Higgs boson obtained
within this framework with the NLO QCD computation of the same distribution as implemented in POWHEG. Effects
of beyond-the-standard-model (BSM) couplings in gluon fusion production on recoil of the final state particles caused
by the QCD radiation have been tested explicitly in the pp → H+2 jets process; we found that their impact on recoil
kinematics is negligible for the analysis of Higgs boson decays. We conclude that parton shower description of QCD
effects is sufficient at the current level of analysis but further refinements of such an approach, for example by means
of dedicated NLO QCD computations, are certainly possible, see e.g. Ref. [32].
In this paper, we employ a simplified detector simulation similar to our earlier studies [7, 8]. Lepton momenta are

smeared with an rms ∆p/p = 0.014 for 90% of events and a broader smearing for the remaining 10%. Hadronic jets
are smeared with an rms ∆p/p = 0.1. Events are selected in which leptons have |η| < 2.4, and transverse momentum
pT > 5GeV; jets, defined with anti-k⊥ algorithm, have ∆Rjj > 0.5, pT > 30GeV, and |ηj | < 4.7. The jet pT threshold
is raised to 50 GeV to study the effects of pileup when we consider the high luminosity LHC scenario. The invariant
mass of the di-lepton pairs from a Z(∗) decay is required to exceed 12 GeV. These selection criteria are chosen to be
as close as possible to existing LHC analyses [5, 6] and we assume that similar selection criteria will be also adopted
for a future e+e− collider. The estimated number of reconstructed events in Table I is scaled down from the number
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FIG. 4: Comparison of transverse momentum pT distribution of a SM Higgs boson with mH = 125 GeV in MC simulation
of 14 TeV pp collisions at the LHC. Higgs production in the gluon fusion is generated by JHU generator combined with Pythia

parton shower (solid red) and by POWHEG (dashed red) where NLO QCD approximation is matched to parton shower. The
decay H → ZZ → 4ℓ is simulated using the JHU generator in both cases. Also shown in the order of decreasing peak position:
V H production (solid green), WBF production (solid blue), and gluon fusion H + 2 jets production (solid magenta) with
the JHU generator. For V H and WBF production, parton shower is included and comparison with NLO QCD POWHEG

simulation (dashed distributions) is shown. All distributions are normalized to unit area except for H + 2 jets, which is
normalized with respect to inclusive gluon fusion production according to its relative cross section with selection requirements
on jets pT > 15 GeV and ∆Rjj > 0.5 as discussed in text.

of produced events by 30% and 80% at pp and e+e− colliders, respectively. The ZH channel at a pp collider with
H → bb̄ accounts for tighter selection requirements discussed in text.
The expected statistical precision of the analysis depends on the number of Higgs bosons produced at each collider

which is proportional to collider’s integrated luminosity. To estimate the number of Higgs bosons expected at the
LHC and at a future e+e− collider we note that each of the two LHC experiments will collect 300 fb−1 of integrated
luminosity at pp collision energy of about 14 TeV. Beyond that, a high-luminosity upgrade is planned where 3000 fb−1

per experiment are expected to be collected [45–47]. Among future facilities, an e+e− collider operating at the center-
of-mass energies of 250 GeV and above with either linear [48] or circular [49] design could deliver a luminosity that
ranges from several hundred to several thousand fb−1. At an e+e− collider the ZH production dominates at lower
energies while at higher energies WW or ZZ fusion dominates. However, although e+e− → νν̄W ∗W ∗ → νν̄H cross
section exceeds the cross section for e+e− → e+e−Z∗Z∗ → e+e−H by about an order of magnitude, no angular
analysis is possible in final states with neutrinos. The process e+e− → e+e−Z∗Z∗ → e+e−H would dominate over
the ZH production at high e+e− energies, as evident from Table I, but it does not provide enhanced sensitivity to
anomalous couplings with increased e+e− energy, as discussed below.
The resulting numbers of a 125 GeV Standard Model Higgs bosons expected at the LHC and at an e+e− collider are

summarized in Table I. We calculate the number of produced signal events Nprod using SM Higgs boson cross sections
and branching fractions from Ref. [10]. The cross sections at an e+e− collider are calculated with the JHU generator
for e+e− → ZH process and MadGraph for e+e− → e+e−H VBF-only process. The selection criteria described above
are used to find the number of reconstructed Higgs bosons Nreco. We assume only small contributions of anomalous
couplings which would not change this number significantly. The LHC experiments are expected to collect sufficient
statistics to study HV V tensor structure both in production and in decay of a Higgs boson. At the same time, the
e+e− machines are in a much better position to study the HV V tensor structure in production, especially at high
energy. However, considerations based entirely on event yields are insufficient since both kinematics and relative
importance of various tensor structures’ contributions change depending on the process and collision energies. To
illustrate this, in Table II we show examples where cross sections σi, defined below Eq. (4), are computed for several
processes.
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TABLE I: Summary of collider options considered for the production of a Higgs boson with the mass of 125 GeV. Collider
center-of-mass energy, integrated luminosity, cross sections for relevant production modes and decay channels are shown.
Reconstructed efficiencies are estimated using selection criteria described in the text and relate the number of produced and
reconstructed events (Nprod and Nreco). In several cases we also show fractions fjet of events with two associated jets with
pT > 30 GeV and ∆Rjj > 0.5.

collider energy
∫

Ldt (fb−1) production σ (fb) decay σ × B (fb) Nprod Nreco fjet

pp 14 TeV 3000 gg → H 49850 H → ZZ∗ → 4ℓ 6.23 18694 5608 0.1

pp 14 TeV 3000 V ∗V ∗ → H 4180 H → ZZ∗ → 4ℓ 0.52 1568 470 0.6

pp 14 TeV 3000 W ∗ → WH 1504 H → ZZ∗ → 4ℓ 0.19 564 169 0.5

pp 14 TeV 3000 Z∗ → ZH 883 H → ZZ∗ → 4ℓ 0.11 331 99 0.5

pp 14 TeV 3000 tt̄ → tt̄H 611 H → ZZ∗ → 4ℓ 0.08 229 69 1.0

pp 14 TeV 3000 V ∗V ∗ → H 4180 H → γγ 9.53 28591 8577 0.6

pp 14 TeV 3000 Z∗ → ZH 883 H → bb̄, Z → ℓℓ 34.3 102891 690 –

e+e− 250 GeV 250 Z∗ → ZH 240 H → bb̄, Z → ℓℓ 9.35 2337 1870 –

e+e− 350 GeV 350 Z∗ → ZH 129 H → bb̄, Z → ℓℓ 5.03 1760 1408 –

e+e− 500 GeV 500 Z∗ → ZH 57 H → bb̄, Z → ℓℓ 2.22 1110 888 –

e+e− 1 TeV 1000 Z∗ → ZH 13 H → bb̄, Z → ℓℓ 0.51 505 404 –

e+e− 250 GeV 250 Z∗Z∗ → H 0.7 H → bb̄ 0.4 108 86 –

e+e− 350 GeV 350 Z∗Z∗ → H 3 H → bb̄ 1.7 587 470 –

e+e− 500 GeV 500 Z∗Z∗ → H 7 H → bb̄ 4.1 2059 1647 –

e+e− 1 TeV 1000 Z∗Z∗ → H 21 H → bb̄ 12.2 12244 9795 –

As evident from Table II, relative cross sections corresponding to scalar (g1) and pseudoscalar (g4) couplings are
different in various HV V processes. For example the ratio σ4/σ1 is 0.153 in the H → ZZ decay, 8.07 in e+e− → ZH
production at

√
s = 250 GeV and grows linearly with increasing

√
s. This is caused by the different dependence

of the scalar and pseudoscalar tensor couplings in Eq. (1) on the off-shellness of the vector boson, which leads to
an asymptomatically energy-independent e+e− cross section in case of CP -odd higher-dimensional operator. This
feature means that, for a fixed ratio of coupling constants |g4/g1|, it is beneficial to go to highest available energy
where the production cross section due to g4 is kinematically enhanced [28]. Therefore, the same fraction of events
for CP -odd contributions at different collider energies translates into different sensitivities for effective couplings gi.
To compare different cases, we express the results of the analysis in terms of fdec

a3 , defined for the Higgs boson decay
to two vector bosons since in this case the kinematics are entirely fixed and this choice determines the ratio of the
coupling constants uniquely.
To illustrate this point further, we examine the energy dependence of the e+e− → Z∗ → ZH cross section for various

tensor couplings. In Fig. 5, cross section dependence on
√
s is shown for the ratio of the coupling constants chosen

in such a way that cross sections for all tensor structures at
√
s = 250 GeV are equal to the SM e+e− → Z∗ → ZH

cross section. The threshold behavior for
√
s < 250 GeV of the cross sections e+e− → Z∗ → XZ has been suggested

as a useful observable to determine the spin of the new boson [14]. Similarly, in a mixed CP -case, the dependence
of e+e− → ZH cross section on the energy of the collision will differ from a pure J CP = 0++ case; therefore, a
measurement of the cross section at several different energies will give us useful information about anomalous HV V
couplings. For example, if the e+e− → Z∗ → ZH cross section is first measured at the center of mass energy√
s = 250 GeV, the scan of cross sections at 350, 500, and 1000 GeV will lead to a measurement of fa3 with precision

0.035, 0.041, and 0.055, respectively, using the expected signal yields reported in Table I. This would translate to
precision on fdec

a3 of 10−4, 4× 10−5, and 10−5, respectively, as defined in the decay H → ZZ∗.
As we have already mentioned, the reason for the significantly improved precision on fdec

a3 that appears to be
achievable at higher energy e+e− colliders is the energy-independence of the cross section for pseudoscalar couplings,
caused by the non-renormalizable nature of the operator Zµν Z̃

µν . Of course, this feature cannot continue forever
and, in any theory, the coupling “constant” g4 should eventually become a q2-dependent form factor, which will
provide suppression for the cross section at higher energies. The energy scale where the q2-dependence of the effective
couplings can no longer be ignored is denoted as Λ4 in Eq. (5) and we do not know this scale a priori. For this reason,
we ignore the q2-dependent form-factors in this paper, but we note that results presented above can be changed to
incorporate possible reduction of the coupling constants with energy. Studies of experimental data should, ideally,
include tests of different values of the form-factor scales Λi.
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TABLE II: Description of processes used for HV V tensor structure measurements with the corresponding cross sections ratios,
where σ1, σ2, or σ4 corresponds to g1 = 1, g2 = 1, or g4 = 1, respectively, and σ+ = σ1 (g+ = g1) for all processes except
couplings to massless vector bosons (Zγ, γγ, gg) where σ+ = σ2 (g+ = g2). MC simulation parameters used in studies are
shown, where the generated coupling gi values correspond to certain fa2 and fa3 values. The expected precision on the fa2
and fa3 parameters are quoted for 300 fb−1 (first row) and 3000 fb−1 (second row) scenarios on LHC and four energy scenarios
on an e+e− machine, as discussed in Table I. This expected precision corresponds to about 3σ deviation from zero of the MC
simulated values. The fdec

a2 and fdec
a3 values correspond to cross sections defined in decay.

process description MC simulation parameters expected precision

collider energy mode σ2/σ1 σ4/σ+ |g2/g1| |g4/g+| fa2 fdec
a2 fa3 fdec

a3 δfa2 δfdec
a2 δfa3 δfdec

a3

any any H → ZZ∗ 0.362 0.153 0 1.20 0 0.18 – 0.06

0 0.67 0 0.06 – 0.02

0.78 0 0.18 0 0.088 –

0.42 0 0.06 0 0.014 –

any any H → WW ∗ 0.776 0.322 0 1.76 0 0.50 – –

1.13 0 0.50 0 – –

any any H → γγ, gg N/A 1.0 N/A 1.0 0 0.50 – –

any any H → Zγ N/A 1.0 N/A 1.0 0 0.50 – –

pp 14 TeV gg → H N/A 1.0 N/A 1.0 0 0 0.50 0.50 – 0.50 0.50

(H → ZZ∗) N/A 1.0 0 0 0.50 0.50 – 0.16 0.16

pp 14 TeV V ∗V ∗ → H 14.0 11.3 0 0.299 0 0 0.50 0.013 – 0.190 7×10−3

(H → ZZ∗) 0 0.109 0 0 0.12 0.0018 – 0.036 6×10−4

pp 14 TeV V ∗V ∗ → H 14.0 11.3 0 0.109 0 0 0.12 0.0018 – 0.04 7×10−4

(H → γγ) 0 0.052 0 0 0.030 0.0004 – 0.009 1.3×10−4

pp 14 TeV V ∗ → V H 76.1 46.8 0 0.145 0 0 0.50 0.0032 – 0.32 3×10−3

(V → qq̄′,H → ZZ∗) 0 0.095 0 0 0.30 0.0014 – 0.10 6×10−4

pp 14 TeV V ∗ → V H 76.1 46.8 0 0.061 0 0 0.15 0.0006 – 0.09 4×10−4

(V → ℓ+ℓ−, H → bb̄) 0 0.049 0 0 0.10 0.0004 – 0.029 1.2×10−4

e+e− 250 GeV Z∗ → ZH 34.1 8.07 0 0.117 0 0 0.10 2× 10−3 – 0.032 7×10−4

0.057 0 0.10 1.2× 10−3 0 0 0.033 4×10−4 –

e+e− 350 GeV Z∗ → ZH 84.2 50.6 0 0.0469 0 0 0.10 3× 10−4 – 0.031 1.1×10−4

0.025 0 0.05 2× 10−4 0 0 0.015 7×10−5 –

e+e− 500 GeV Z∗ → ZH 200.8 161.1 0 0.0263 0 0 0.10 1.1× 10−4 – 0.034 4×10−5

0.024 0 0.10 2× 10−4 0 0 0.033 7×10−5 –

e+e− 1 TeV Z∗ → ZH 916.5 870.8 0 0.0113 0 0 0.10 2× 10−5 – 0.037 8×10−6

0.014 0 0.15 7× 10−5 0 0 0.049 3×10−5 –

We conclude this general discussion by pointing out that three types of observables can be used to measure tensor
couplings of the Higgs bosons in general and fa3 in particular. They are

1. cross sections, especially their dependences on virtualities of weak bosons [27, 28, 30]. Examples are shown
in Fig. 5 for the e+e− → Z∗ → ZH process and in Fig. 14 for the decay H → ZZ∗. We note that while
measurements of cross sections in different kinematic regimes appear to be a powerful tool to study anomalous
couplings, it relies on our understanding of dynamics, rather than kinematics, and therefore may be sensitive to
poorly understood form-factor effects or breakdown of effective field-theoretic description.

2. Angular distributions particular to scalar and pseudoscalar HV V interactions or, more generally, to different
types of tensor couplings. Examples of such distributions are shown in Figs. 3, 14, 19, 20.

3. Angular distributions or other observables particular to interferences between CP -even and CP -odd couplings.
Examples include forward-backward asymmetry with respect to cos θ1 or cos θ2 and non-trivial phase in the Φ
distributions shown in Figs. 3 and 14. Such asymmetries require undefined CP to appear; as the result, CP
violation would follow as an unambiguous interpretation e.g. once the forward-backward asymmetry is observed.
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FIG. 5: Cross sections for e+e− → Z∗ → ZX process as a function of
√
s for three models: SM Higgs boson (0+, solid), scalar

with higher-dimension operators (0+h , short-dashed), and pseudoscalar (0−, long-dashed). All cross sections are normalized
to SM value at

√
s = 250 GeV. Different high-energy behavior of cross sections related to point-like interactions (solid) and

higher-dimensional non-renormalizable operators (dashed) is apparent from the right panel.

In order to measure or set a limit on fa3, it is important to employ all types of observables described above and
not limit oneself to CP -specific ones, such as interferences. In particular, if only a limit is set on fa3, the phase of
CP -odd contribution φa3 is generally unknown and one cannot predict the forward-backward asymmetry in cos θ1
nor the non-trivial phase in Φ, as shown in Figs. 3 and 14. For example, even under the assumption of real coupling
constants, φa3 ambiguity between 0 and π needs to be resolved. In principle, model-dependent assumptions can
be made about such phases and tighter constraints on fa3 can be obtained, but it is important to pursue coupling
measurements that are as model-independent as possible. On the other hand, once a non-zero value of fa3 is observed,
its phase φa3 can be measured directly from the data, as we illustrate below. While we focus on the measurement of
the CP -odd contribution fa3, we also illustrate measurements of fa2 and fΛ1, which can be performed with a similar
precision. Here fΛ1 is defined as in Eq. (4); it provides the cross section fraction that is induced by −g′′1 × (q21+q22)/Λ

2
1

anomalous coupling.

A. The e+e− → ZH process

To illustrate the above points, we considered e+e− → ZH process, with Z → ℓ+ℓ− and H → bb̄. The number of
signal events is estimated in Table I for four energies

√
s = 250, 350, 500, 1000 GeV, that are under discussion for

an electron-positron collider, and are rounded to 2000, 1500, 1000, 500 events, respectively. The effective number of
background events is estimated to be 10% of the number of signal events and is modeled with the e+e− → ZZ →
ℓ+ℓ−bb̄ process. Cross sections for several simulated signal samples are displayed in Table II. We assume that the
signal can be reconstructed inclusively by tagging Z → ℓ+ℓ− decay and using energy-momentum constraints, but
further improvements can be achieved through the analysis of the Higgs boson decay products and by considering
other Z decay final states. In view of this, our estimates of expected sensitivities are conservative.
Our analysis techniques are identical to what has been used earlier to study Higgs spin and parity in the pp →

H → ZZ process at the LHC [7, 8]. For this channel and the channels in the following subsections, the details of the
analyses are explained in Appendix B. We employ either the dedicated discriminants D0− and DCP , or the multi-
dimensional probability distribution. Several thousand statistically-independent experiments are generated and fitted
using different approaches. Detector effects and backgrounds are included either with direct parameterization of one-
or two-dimensional distributions or by exploiting certain approximations of a multidimensional model, as explained
in Appendix B.
For the e+e− case discussed in this section, we first obtained results for the sensitivity to the fractions fa2,a3 at fixed

collider energy and then expressed these constraints in terms of the parameters fdec
a2,a3. Figure 6 shows precision on fa3

and fa2 obtained with generated experiments that include background. Expected precisions of fa2,a3 measurements
are shown in Table II. As can be seen there, the expected precision on fa3 is in the range 0.03− 0.04, independent of
the e+e− collision energy. This translates to very different constraints on fdec

a3 that range from 7× 10−4 to 8× 10−6;
as we already explained, measuring a similar fraction of events caused by the pseudoscalar anomalous couplings at
higher energy means a sensitivity to a smaller value of g4. The expected precision is therefore similar to what can
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FIG. 6: Distribution of fitted values of fa3, φa3, and fa2 in a large number of generated experiments in e+e− → ZH process
at

√
s = 250 GeV. Left plot: fa3 results from simultaneous fit of fa3 and φa3. Middle and right plots: simultaneous fit of fa3

and φa3 or fa3 and fa2, with 68% and 95% confidence level contours shown.

be achieved from cross section measurements at different energies, but in this case it relies on kinematic observables
rather than dynamic ones that can be subject to form-factor effects. The expected precision of fdec

a2 is comparable to
that of fdec

a3 . We also confirm that precision on fa3 does not change significantly if φa3 is either floated or kept fixed
provided that the measured value of fa3 is at least 3σ away from zero.
The process e+e− → ZH → (ℓ+ℓ−)H is relatively simple and the three-dimensional (3D) analysis is sufficient

to extract most information from the multi-parameter fit, as illustrated above. Let us discuss this example as an
illustration of how CP -analysis can be performed in other, more complicated, channels at both proton and lepton
colliders. At a given e+e− energy, there are no form-factor effects to study and the couplings are constant and, in
general, complex numbers. Therefore, dynamic information sensitive to form factors is contained in the

√
s dependence

and can be easily separated from the rest. The other two pieces of information, as we discussed above, can be
incorporated in two discriminants D0− and DCP , see Fig. 7 and Appendix B. The D0− discriminant is optimal to
separate amplitudes squared representing the scalar and pseudoscalar contributions. The DCP discriminant is optimal
to separate interference of the scalar and pseudoscalar amplitudes.
The DCP is particularly interesting as it incorporates the full information about interference in a single observable

which exhibits clear forward-backward asymmetry indicating CP violation. There is a built-in assumption about
the relative phase of the g1 and g4 terms in the DCP construction. Under the assumption φa3 = 0 or π, which
can be justified if heavy particles generate the g4 coupling perturbatively, DCP exhibits maximal forward-backward
asymmetry, with the sign changing between φa3 = 0 and π. Should the phase be between 0 and π, the asymmetry
is reduced and, eventually, vanishes at φa3 = π/2. If this happens, it is possible to construct another discriminant
D⊥

CP that has maximal asymmetry at φa3 = ±π/2 and has asymmetry vanishing at φa3 = 0, π. At any rate, it is
straightforward to introduce the two discriminants (DCP , D

⊥
CP ) that will allow us to measure non-zero interference

and the phase φa3.
We stress that it is advantageous to use D0− and DCP discriminants. Indeed, they cleanly separate information

contained either in the yields of CP -odd and CP -even contributions or their interference. The same information is
present in the angular observables, such as those shown in Fig. 3, but it is hidden in the multi-dimensional space. For
example, forward-backward asymmetry is also visible in the plots in Fig. 3, but it is less obvious in some cases. For
example, in case of φa3 = 0 no simple observable exists to illustrate it. It is also hard to describe distributions with
larger number of dimensions for some of the other processes (e.g. VBF discussed later) or to parameterize both the
detector effects and background. It is relatively simple to parameterize the one- or two-dimensional distributions of
D0− and DCP as we show below. Moreover, this approach can be easily extended to measure fa2 using the dedicated
discriminants with the same approach, which includes interference of the g1 and g2 terms.
Figure 7 illustrates the results of several measurements using either an optimal 3D analysis, or a single- or double-

discriminant analysis. We omit background events in this study to simplify presentation, but this has little effect on
the conclusion. For the discriminant parameterization, we use Eq. (B2) with either 1D or 2D template histograms.
When fa3 is obtained from a one-dimensional fit to D0− , which does not contain an interference between the CP -odd
and CP -even contributions, the precision on fa3 gets worse by about 65% with fa3 = 0.05, 37% with fa3 = 0.10
and by 12% with fa3 = 0.50 at

√
s = 250 GeV, with each case corresponding to 3σ measurements of fa3. Note that

interference scales as
√
fa3 and therefore dominates at small values of fa3. Hence, especially for small event fractions,
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FIG. 7: Distribution of D0− and DCP for generated events e+e− → ZH at
√
s = 250 GeV. Three processes are shown: SM

(0+, red open circles), pseudoscalar (0−, blue diamonds), and a mixed state corresponding to fa3 = 0.5 with φa3 = 0 (green
squares). Right plot: fa3 results without considering background and detector effects: 1D fit of D0− (solid black); 2D fit of
D0− and DCP (dot-dashed green); 3D fit with fa3 and φa3 unconstrained (dotted blue); and 3D fit with fa3 only unconstrained
(dashed magenta).

the interference effects are important to include when non-zero CP -odd contribution is observed, and they appear to
be more important in this mode than in the H → ZZ decay, as we will see below, because analysis does not rely on
observables sensitive to dynamics. When fa3 is obtained from a two-dimensional fit of D0− and DCP , precision of the
full multi-dimensional fit is recovered. However, we note that DCP or D⊥

CP do not provide additional constraint on
fa3 without constraints on φa3.
All the above techniques can be applied to all other channels under consideration, as discussed below. While we

provide the tools to explore all these methods, we often choose the more practical ways to illustrate expected precision
in each channel.

B. The H → ZZ∗ process on LHC

In this subsection, we study precision on tensor coupling measurements that can be achieved by exploiting kinematics
of H → ZZ∗ process at the LHC. The signal contributions are listed in Table I; we consider the sum of all five
production mechanisms. The effective number of background events is estimated to be 0.4 times the number of signal
events; it is modeled with the qq̄ → ZZ∗/Zγ∗ process. We compare the sensitivity that can be reached when 300 fb−1

and 3000 fb−1 of integrated luminosity is collected at the LHC. The number of Higgs events at 300 fb−1 is taken to
be 10% of the 3000 fb−1 yields quoted in Table I. Cross sections for some of the simulated signal samples are listed
in Table II.
Figure 8 illustrates precision on fa3 that can be achieved when both fa3 and φa3 are allowed to float in the multi-

parameter fit with seven observables. We ignore potential q2-dependence of the couplings in this study due to a small
q2 range in H → ZZ∗ process, but later we examine one such example. The generated values for fa3 = 0.18 (0.06)
at 300 (3000) fb−1 are about three standard deviations away from zero. A similar approach is taken for precision
in the fa2 measurement, where for illustrative purpose we study the φa2 = 0 case. These results are summarized
in Table II. We also show that both fa2 and fa3 could be measured simultaneously, see Fig. 9 (left). Overall, the
expected precision on fa3 is 0.06 (0.02) with 300 (3000) fb−1 at the LHC, which is in good agreement with similar
studies performed by CMS [46]. The expected precision on fa2 is comparable, but it more strongly depends on the
phase φa2 than in the case of fa3 measurement.
To study certain features of the multi-dimensional distributions, no background or acceptance effects were included

for simplicity of the presentation. We do this, in particular, when we show results of the fa3 fits obtained in three
different ways – one-dimensional fit of D0− , two-dimensional fit of D0− and DCP , and multi-dimensional fit of seven
angular and mass observables. Figure 10 shows results of these fits assuming the 300 fb−1 luminosity at the LHC. The
events were generated with fa3 = 0.18. These studies are performed with a constraint that the coupling phases are
real, but we find fa3 precision to be essentially the same if φa3 is either floated or constrained in the 7D fit provided,
of course, that the number of events is sufficiently high. The two-dimensional fit recovers the precision of the 7D
fit as the full information relevant for the yield and interference measurement of the two components is retained.
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FIG. 9: Simultaneous fit of fa3 and fa2 with 68% and 95% confidence level contours shown. Left plot: 7D fit with 300 fb−1

scenario. Right plot: 3D fit with background and detector effects not considered, see text for details. Negative values of fa3
and fa2 correspond to φa3 = π and φa2 = π, respectively.

When the one-dimensional fit of D0− is employed the precision of the fa3 measurement gets worse by about 4% with
fa3 = 0.18 (3σ observation at 300 fb−1), 13% with fa3 = 0.06 (3000 fb−1) and 30% with fa3 = 0.02 (30000 fb−1). This
again illustrates our assessment that interference effects are important to include when non-zero CP contribution is
observed but that they are not the primary drivers of the discovery of CP violation in HV V interactions with available
statistics.
In Fig. 10, a similar study is presented for the measurement of either fa2 or fΛ1. In all cases, either a 7D fit is

performed, or a 1D fit (with D0+
h

or DΛ1), or a 2D fit (with additional interference discriminant Dint optimal for each

interference case). We find that 1D fits recover the precision of a 7D fit in both of these cases. In Fig. 9 (right), we
also illustrate the 3D analysis with the discriminants D0− , D0+

h

, DCP . We find that the three listed discriminants are

sufficient to recover precision of the 7D fit with tested statistics. In this study we allow negative values of fa2 and fa3
to incorporate the phase information φa2,3 = 0 or π as fa2 × cos(φa2) and fa3 × cos(φa3). The 2D fit with D0− , D0+

h

is also close in precision to the 7D fit and is not sensitive to φa3.
We also note that similar techniques can be applied to the decays H → WW → 2ℓ2ν, as demonstrated in Ref. [8],

and H → Zγ → 2ℓγ, as demonstrated in Appendix A. However, only partial polarization information is available in
those channels. Moreover, any decay mode can be studied at a lepton collider. However, since a typical lepton collider
has the advantage in associated production mode, only such mode is presented in this study.
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C. The VBF process on LHC

We illustrate analysis of the weak boson fusion process considering two decays of the Higgs boson, H → ZZ∗ and
H → γγ. In both cases, two high transverse momentum jets are required. Yields of signal events are summarized
in Table I. The fjet parameter indicates the fraction of events with two jets. We ignore the V H production of Higgs
bosons in this analysis since it can be isolated from the WBF events by applying constraints on the invariant mass of
the two jets. We discuss V H production in the next subsection.
The gluon fusion production of a Higgs boson contaminates WBF sample significantly and is treated as a background.

As shown below, CP properties of events produced in gluon fusion do not affect their kinematics strongly; this
allows us to use the SM predictions for pp → H + 2j in the background studies. The other background originates
from di-boson production with associated jets ZZ(γγ) + 2 jets and is modeled explicitly in the analysis. Selection
requirements follow closely those suggested by the ATLAS and CMS collaborations [5, 6]. In the analysis of the
H → γγ channel, additional requirements are applied on the dijet invariant mass mjj > 350 GeV and pseudorapidity
difference ∆ηjj > 3.5, to improve the purity of the WBF signal. This leads to an additional WBF signal suppression
by a factor 0.6 with respect to that quoted in Table I. The ratio of gluon fusion and weak boson fusion events is 0.42
and the ratio of di-boson + 2 jets and weak boson fusion events is 4.7 in the H → γγ channel. The same ratios in
the VBF H → ZZ∗ channel are 2.2 and 0.7, respectively.
Analysis is performed with the two discriminants ~xi = (D0− , Dbkg), as discussed in Appendix B. The D0− discrim-

inant is sensitive to ratios of scalar to pseudoscalar components in the HV V vertex and is based on numerical matrix
elements for two types of signals. The Dbkg discriminant is constructed to facilitate signal-to-background separation,
where signal is represented by the scalar weak boson fusion matrix element, and background is represented by the
scalar H + 2j matrix element. Results of one-parameter fits of fa3 in both topologies are shown in Fig. 11 and
presented in Table II. The H → ZZ channel is cleaner, but the H → γγ channel provides higher statistics and, as a
result, it has about three times better precision for the same collected luminosity. The ultimate precision on fa3 is in
general comparable to that achieved in H → ZZ decay. However, due to large off-shell mass of the V ∗ in production,
this translates to a substantially better precision on fdec

a3 of 1.3× 10−4 with 3000 fb−1.
It is interesting to reverse the analysis and search for CP violation in the gluon fusion production process. Since

the selection requirements in the H → γγ channel suppress gluon fusion production significantly, we investigate the
feasibility of this measurement in the cleaner H → ZZ∗ channel. The Dbkg discriminant remains the same, but
it now serves the purpose to separate H + 2 jets signal from the SM weak boson fusion contamination. The D0−

discriminant provides separation between production of scalar and pseudoscalar Higgs in gluon fusion events, based
on the corresponding matrix elements. Results of this study are also shown in Fig. 11 and Table II. With 3000 fb−1,
the precision on fa3 is about 0.16, while with 300 fb−1 the precision is about 0.5.
An important consideration in the high-luminosity scenario of the LHC is a very high number of multiple proton-

proton interactions per collision, leading to so-called pileup events. The pileup results in a very large number of
relatively low pT jets from multiple interactions which could fake a signal. There are detector design considerations
which may improve suppression of such jets in data analysis. However, for the purpose of this study we mitigate the
effects of increased pileup in the 3000 fb−1 scenario by imagining that low-pT jets cannot be reconstructed and by
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FIG. 11: Distribution of fitted values of fa3 in a large number of generated experiments in the weak boson fusion with
H → ZZ∗ (left) and H → γγ (middle), and strong boson fusion with H → ZZ∗ (right) channels with 300 fb−1 (dotted) and
3000 fb−1 (solid) of data collected at LHC.

increasing pT threshold for reconstructed jets to 50 GeV. As a consequence, the uncertainty on fa3 increases by 17%
and 40% in the channels V ∗V ∗ → H and gg → H + 2 jets with H → ZZ∗, respectively, while there is no noticeable
change in V ∗V ∗ → H → γγ due to tighter selection requirements. The changes are not dramatic and could be offset
by other improvements in analyses, such as addition of other modes.
We also note that the VBF process at a lepton collider e+e− → e+e−Z∗Z∗ → e+e−H can be studied with the same

techniques as discussed here for the LHC. This channel will in fact dominate over the e+e− → ZH → ℓ+ℓ−H process
at high energies, see Table I. However, the q2 range of the virtual V ∗ bosons in a VBF process depends only weakly
on the collider energy and therefore we do not expect increased sensitivity to fdec

a3 as observed in the e+e− → ZH
production process. We therefore do not study this channel in this paper and leave it to future work.

D. The qq̄′ → V H process on LHC

We illustrate analysis of VH events using two processes, pp → ZH/WH → (qq̄′)(ZZ∗) and pp → ZH → (ℓℓ)(bb̄). In
the first case, the final state is identical to the one in WBF analysis, described in Sec. IVC. Discussion of major back-
ground contributions can be found there. The distinguishing feature of the ZH/WH signal is the peak in the Z/W → 2
jets invariant mass mjj distribution whose width is dominated by detector resolution. Therefore, we separate the
mjj probability distribution from the signal description and parameterize it with an empirical Gaussian function.
The rest of the matrix element squared is parameterized analytically as a function of (mVH , cos θ1, cos θ2,Φ, Y ) using
Eq. (A3). We find kinematics of the ZH and WH events to be essentially identical, except for the small shift in
mjj . Therefore, the results are obtained by combining the ZH/WH channels under a single topology using the ZH
model. Similarly to the VBF case described in the previous subsection, we perform a two-dimensional fit with the
discriminant ~xi = (D0− , Dbkg).
To discuss pp → ZH → (ℓℓ)(bb̄) case, we estimate signal and background yields following ATLAS and CMS selection

requirements [5, 6]. The expected number of signal events is shown in Table I. To suppress otherwise overwhelming
background, we require large transverse momentum of the Higgs boson pT,H > 200 GeV, see Fig. 4. This, combined
with other selection requirements of the Z → ℓℓ and H → bb̄, leads to about 0.7% reconstruction efficiency. The
dominant background is from Z+jets, which we take to be 5 times the size of signal with the above selection, but we
approximate its shapes with pp → ZZ → (ℓℓ)(bb̄) simulation. Approximate modeling of broad kinematic distributions
of background does not affect separation between two types of signal. Analysis is performed in a narrow mass window
of the bb̄ invariant mass with a 1D ~xi = (D0−) parameterization using Eq. (A3) for probability calculations.
Results of one-parameter fits of fa3 using each of the two processes discussed above are shown in Fig. 12 and

presented in Table II. The conclusion is very similar to the VBF topology study. The H → ZZ channel is cleaner,
but the H → bb̄ channel provides higher statistics and as a result three times better precision for the same collected
luminosity. The ultimate precision on fa3 is in general comparable to that achieved in H → ZZ decay. However, due
to large off-shell mass of the Z∗ in production, this translates to a substantially better precision on fdec

a3 defined in
decay, 1.2× 10−4 with 3000 fb−1, similar to the expectation in the VBF channel. We mitigate the effects of increased
pileup in the 3000 fb−1 scenario by increasing thresholds of jet pT > 50 GeV, which leads to about a factor of two



15

a3f
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

a3f
0 0.1 0.2 0.3

0

0.05

0.1

FIG. 12: Distribution of fitted values of fa3 in a large number of generated experiments in the channels pp → ZH/WH →
(qq̄′)(ZZ∗) (left) and pp → ZH → (ℓℓ)(bb̄) (right) with 300 fb−1 (dotted) and 3000 fb−1 (solid) of data collected at the LHC.

degradation in precision in the H → ZZ channel. We note that the H → bb̄ channel has tighter selection requirements
and could also benefit from jet substructure techniques [50].
We also note that while we considered only the pp → ZH → (ℓℓ)(bb̄) channel in the H → bb̄ final state, the technique

is directly applicable to the pp → WH → (ℓν)(bb̄) and pp → ZH → (νν̄)(bb̄) channels. In the pp → WH → (ℓν)(bb̄)
case, the ν can be reconstructed as a missing transverse energy with the W mass constraint and a two-fold ambiguity
only remaining. Therefore, the full matrix element can be used. This technique can be used in the Z → νν̄ case
where the Z can be reconstructed as missing transverse energy as well, but some information is lost.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the feasibility to measure anomalous couplings of the Higgs boson to electroweak
gauge bosons and gluons, including CP -violating couplings. A coherent framework is presented to study these anoma-
lous couplings in Higgs boson decays, vector boson fusion, or associated production of a Higgs boson at either proton
or lepton colliders. Both, a Monte Carlo simulation program and a matrix element likelihood approach are developed
for these three types of processes. The expected sensitivity to the fdec

a3 parameter, defined as the CP -odd cross section
fraction in the decay to two vector bosons and which we will denote as fCP here, is summarized in Table III and
Fig. 132. At both the high-luminosity LHC and the first stage of the e+e− collider, fCP as small as 10−4 can be
measured in the coupling to weak bosons (W and Z). Higher precision seems to be achievable at a higher-energy e+e−

collider, provided that q2-dependence of effective couplings does not yet lead to the suppression of non-renormalizable
interactions.
In the case of a parity-mixed H state, the fCP value in either H → ZZ or WW decay is expected to be small since

the pseudoscalar coupling is loop-induced. Therefore, values as small as fCP ∼ 10−5 might be expected even in the
case of sizable admixture of a pseudoscalar. As follows from Table III, such small values cannot be measured either at
the LHC or at the initial-stage e+e− collider, but expected precision is not out of scale and interesting measurements
could be achieved with higher luminosity and additional modes. Nonetheless, measuring fCP in couplings to massless
vector bosons (gg, γγ, Zγ) might be an interesting alternative, since both scalar and pseudoscalar components are
expected to be equally suppressed by the loop effect, and fCP ∼ 10−2 might be expected [51]. We have tested the
expected sensitivity to fCP in the Hgg coupling at the LHC. We found that kinematic features in the production of
the Higgs boson in the association with jets are not strongly modified but interesting measurements could be made
with sufficient statistics.
Measuring fCP in the H → Zγ and H → γγ modes at the LHC is a challenge due to their low branching

2 The measurement of fCP is independent of the coupling convention and therefore more convenient, but it is equivalent to the mea-
surement of g4/g1 coupling ratio. The translation between the two notations can be done using Eq. (4) and comments below it. The
translation between the fa3 and fdec

a3 ≡ fCP is not linear and may lead to asymmetric errors, from which we quote the uncertainty on
the lower side. We omit the V H point at the 300 fb−1 LHC scenario because it does not quite reach the 3σ threshold.
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TABLE III: List of fCP values in HV V couplings expected to be observed with 3σ significance and the corresponding
uncertainties δfCP for several collider scenarios, with the exception of V ∗ → VH mode at pp 300 fb−1 where the simulated
measurement does not quite reach 3σ. Numerical estimates are given for the effective couplings Hgg, Hγγ, HZγ, HZZ/HWW ,
assuming custodial Z/W symmetry and using HZZ couplings as the reference. The � mark indicates that a measurement is
in principle possible but is not covered in this study.

HZZ/HWW Hgg HZγ Hγγ

collider energy L H → V V ∗ V ∗ → VH V ∗V ∗ → H gg → H H → Zγ γγ → H H → γγ

GeV fb−1 fCP δfCP fCP δfCP fCP δfCP fCP δfCP

pp 14 000 300 0.18 0.06 6×10−4 4×10−4 18×10−4 7×10−4 – 0.50

pp 14 000 3 000 0.06 0.02 3.7×10−4 1.2 ×10−4 4.1×10−4 1.3×10−4 0.50 0.16 � �

e+e− 250 250 � 21×10−4 7×10−4
�

e+e− 350 350 � 3.4×10−4 1.1 ×10−4
�

e+e− 500 500 � 11×10−5 4×10−5
�

e+e− 1 000 1 000 � 20×10−6 8×10−6
�

γγ 125 � �

fractions, and it is essentially impossible at an e+e− collider. Measurements in the H → Z∗γ∗(γ∗γ∗) → 4ℓ process is
also possible, but is challenging experimentally and requires high statistics. The H → γγ final states does not allow
measurement of CP properties without the photon polarization measurement. The latter could be measured in photon
conversion in the detector, but this makes the analysis very challenging and demands large statistics. Alternatively,
there is a proposal for a photon collider which could be built in association with a linear e+e− collider and its
strong feature is the ability to collide polarized photons, with which CP properties could be studied [52]. Measuring
polarization of the Z in H → Zγ is not sufficient for CP property measurements, unless there are complex phases
in the couplings, see Appendix A. Nonetheless, we provide the tools to study angular correlations in the H → Zγ
process.
Finally, we comment on some further extensions of this analysis. First, similar measurements can be performed in

H → WW ∗ decay mode. However, we have already shown [8] that spin-zero coupling measurement is less precise in
this channel compared to H → ZZ∗. Both decays could be studied at the e+e− collider, but the strongest feature of
the e+e− collider is to measure these coupling in production, not in decay, due to larger statistics available and also
due to cross-section effects. Prospects for measuring anomalous couplings in the VBF process Z∗Z∗ → H at an e+e−

collider are similar to what we discussed at the LHC. The number of events in this mode is in fact much larger than
in the Z∗ → ZH production mode with Z → ℓℓ at higher energies [12], as shown in Table I, but we do not expect
enhanced sensitivity to fCP in this mode due to limited q2 range for the virtual Z∗ bosons. We leave further studies
in this mode to future work, while the tools will be very similar to those already employed in LHC studies shown
here.

Acknowledgments: We would like to acknowledge the long-term planning exercise for the U.S. high-energy physics
community, also known as “Snowmass,” from which this study emerged [47]. We would like to thank Snowmass
participants and CMS collaboration colleagues for feedback, and in particular Michael Peskin and Tao Han for
encouragement of the e+e− studies and Serguei Ganjour for discussion of the γγ channel on LHC. We acknowledge
contribution of our CMS collaboration colleagues to the MELA project development, and in particular Meng Xiao
for support of the MELA package. We are grateful to Jonathan Aguilar, Roberto Covarelli, Ben Kreis, Candice You,
Xiaozhou Zhou for help with the generator validation. We acknowledge significant contribution of Ulascan Sarica
to development of statistical analysis tools. This research is partially supported by U.S. NSF under grants PHY-
1100862 and PHY-1214000, and by U.S. DOE under grants DE-AC02-06CH11357 and DE-AC02-07CH11359. We
also acknowledge support from the LPC-CMS Fellows program operated through FNAL. Calculations reported in
this paper were performed on the Homewood High Performance Cluster of the Johns Hopkins University.



17

-1

pp 14 TeV,  300 fb -1

pp 14 TeV,  3000 fb -1

ee 250 GeV, 250 fb -1

ee 350 GeV, 350 fb -1

ee 500 GeV, 500 fb -1

ee 1 TeV, 1000 fb

C
P

f

-610

-510

-410

-310

-210

-110

1

FIG. 13: Summary of precision in fCP for HV V couplings (V = Z,W ) at the moment of 3σ measurement. Points indicate
central values and error bars indicate 1σ deviations in the generated experiments modeling different luminosity scenarios at
proton (solid red) or e+e− (open blue) colliders. Measurements in three topologies V H (triangles), WBF (squares), and decay
H → V V (circles) are shown. Different energy and luminosity scenarios are indicated on the x-axis.

Appendix A: Event description with the matrix element likelihood approach (MELA)

The main tool that we use in the analyses described in this paper is the likelihood method that employs expected
probability distributions for various processes that can be used to measure anomalous Higgs boson couplings. In this
Appendix, we provide the necessary information for finding these probability distributions and give a few examples
of how they can be used.

1. The H → V V ∗ process

We begin by describing the decay process H → V V → 4f , following notation of Refs. [7, 8]. This process is
important not only because it can be used directly to constrain anomalous couplings but also because various crossings
of H → V V amplitude give amplitudes for associated Higgs boson production and vector boson fusion. Complete
description of the decay amplitude for H → V V ∗ requires two invariant masses and five angles, defined in Fig. 1. We

collectively denote these angles as ~Ω = (cos θ∗,Φ1, cos θ1, cos θ2,Φ). The probability distribution that describes the
decay of a Higgs boson to two gauge bosons V is written as

dΓ(m1,m2, ~Ω)

dm1 dm2 d~Ω
∝ |~pV (m1,m2)| ×

m3
1

(m2
1 −m2

V
)2 +m2

V
Γ2

V

× m3
2

(m2
2 −m2

V
)2 +m2

V
Γ2

V

× dΓ(m1,m2, ~Ω)

d~Ω
, (A1)

where the fully analytical expression for dΓ/d~Ω is given in Eq. (A1) of Ref. [8], and ~pV is the V boson momentum in
H rest frame. We show examples of kinematic distributions obtained for different types of tensor couplings in Fig. 14.
Simulated events and projections of analytic distributions from Eq. (A1) are compared there, illustrating an agreement
between the two computations. Additional examples, including angular distributions for other spin hypotheses, can
be found in Ref. [8]. We note that lepton interference in the final states with identical leptons changes the expected
performance of the analysis by only a few percent. We therefore neglect this interference in the feasibility studies
presented, but provide the tools to take it into account [8, 37]. For example, lepton interference leads to variation
of the fraction of the same-flavor four-lepton events with respect to opposite-flavor events and this effect depends on
the tensor structure of interactions. This interference is constructive in the Standard Model and destructive for a



18

 [GeV]1m
40 60 80 100 120

 

0

2

4

6

8

 [GeV]2m
0 20 40 60

 

0

0.5

1

1θcos
-1 -0.5 0 0.5 1

 

0

0.2

0.4

0.6

0.8

Φ
-2 0 2

 

0

0.2

0.4

0.6

FIG. 14: Distributions of the observables in the H → ZZ analysis, from left to right: m1, m2 (where m1 > m2), cos θ1 (same
as cos θ2), and Φ. Points show simulated events and lines show projections of analytical distributions. Four scenarios are shown:
SM (0+, red open circles), pseudoscalar (0−, blue diamonds), and two mixed states corresponding to fa3 = 0.5 with φa3 = 0
(green squares) and π/2 (magenta points). For a spin-zero particle, distributions in cos θ∗ and Φ1 are trivially flat, but this is
not true for higher-spin states [8] or with detector effects.
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FIG. 15: Distributions of the cos θ1 observable in the H → Zγ analysis. Four scenarios are shown: SM (0+, red open circles),
pseudoscalar (0−, blue diamonds), and two mixed states corresponding to fa3 = 0.5 with φa3 = 0 (green squares) and π/2
(magenta points). For a spin-zero particle, distributions in cos θ∗ and Φ1 are trivially flat.

pseudoscalar decay. Therefore, when fa3 is defined, we use the H → ZZ∗ → 2e2µ mode without lepton interference
for the cross section calculations.
We illustrate the decay process H → Zγ → 2fγ in Fig. 15. For a spin-zero particle, only one angular distribution

is non-trivial, cos θ1. The distribution reads (1 + cos2 θ1), unless a complex phase φa3 = arg(g4/g2) appears in the
couplings. The angular distribution can be easily derived from formulas in Refs. [7, 8]; for the case fa3 = 0.5 with
φa3 = π/2 the angular distribution reads (1 + 2Af cos θ1 + cos2 θ1), see Fig. 15. Note that in this case the forward-

backward asymmetry is maximal. Here Af = 2ḡfV ḡ
f
A/(ḡ

f2
V +ḡf2A ) is the parameter characterizing the decay Z → f f̄ [53]

and it is approximately 0.15 for Z → ℓ+ℓ−. Since non-trivial asymmetry appears in the H → Zγ → 2fγ decay in
the special case of complex g4/g2 coupling ratio only, we do not consider this mode further for the measurement of
anomalous HV V couplings, but we point out that such a study is in principle possible.

2. The e+e− → ZH process

We obtain the matrix element for the e+e− → Z∗ → ZH process by crossing the amplitudes for H → ZZ∗

described above. Since the intermediate Z∗ boson has fixed invariant mass3 and all final state particles are on shell,

the probability distribution depends on five angles ~Ω, defined in the middle panel of Fig. 1. It might be easier to
understand the decay kinematics in Fig. 16, but we would like to stress that the two are equivalent and Fig. 1 allows
direct analogy with the already established process of a Higgs boson decay.

3 The invariant mass obviously coincides with the energy
√
s of an e+e− collider.
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FIG. 16: Higgs production and decay at the e+e− or pp collider with e+e−(qq̄) → Z∗ → ZH → ℓ+ℓ−bb̄ as shown in the parton
collision frame.
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FIG. 17: Cross section of e+e− → Z∗ → ZX process as a function of
√
s for several representative models: SM Higgs

boson (0+, solid red), vector (1−, dot-long-dashed blue), axial vector (1+, dot-short-dashed blue), Kaluza-Klein graviton with
minimal couplings (2+m, long-dashed green), spin-2 with higher-dimension operators (2+h , short-dashed green). All cross sections
are normalized to SM value at

√
s = 250 GeV.

To compute the differential cross section for e+e− → ZH → µ+µ−H , we modify dΓ/d~Ω in Eq. (A1) of Ref. [8] to
account for changes in kinematics. In particular, s′ = q1q2 in Eq. (13) of Ref. [8]4 is defined for two outgoing momenta
of Z-bosons. If instead we use the four-momentum P1 of the initial e+e− state, we must write q1 = −P1 and, as a
result, s′ = −P1q2 = −(m2

H
−m2

1 −m2
2)/2 , where m2

1 = P 2
1 and m2

2 = m2
Z . This leads to the following differential

angular distributions for a spin-zero particle production

dΓJ=0(s, ~Ω)

d~Ω
∝ 4 |A00|2 sin2 θ1 sin

2 θ2

+ |A+0|2
(

1− 2R1 cos θ1 + cos2 θ1
) (

1 + 2Af2 cos θ2 + cos2 θ2
)

+ |A−0|2
(

1 + 2R1 cos θ1 + cos2 θ1
) (

1− 2Af2 cos θ2 + cos2 θ2
)

− 4|A00||A+0|(R1 − cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(Φ + φ+0)

− 4|A00||A−0|(R1 + cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(Φ− φ−0)

+ 2|A+0||A−0| sin2 θ1 sin2 θ2 cos(2Φ− φ−0 + φ+0) . (A2)

In Eq. (A2), R1 = (Af1 +P−)/(1+Af1P
−), where Afi = 2ḡfV ḡ

f
A/(ḡ

f2
V + ḡf2A ) is the parameter characterizing the decay

Zi → fif̄i [53] with Af1 ≃ 0.15 for the Zee coupling, Af2 is for the coupling to fermions in the Z decay, and P− is the

4 We add prime to s′ to avoid confusion with
√
s = m1 in this case.
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FIG. 18: Distributions of the observables in the pp → ZH analysis, from left to right: mVH , cos θ1, cos θ2, Φ. Points show
simulated events and lines show projections of analytical distributions. Four scenarios are shown: SM (0+, red open circles),
pseudoscalar (0−, blue diamonds), and two mixed states corresponding to fa3 = 0.5 with φa3 = 0 (green squares) and π/2
(magenta points).

effective polarization of the electron beam defined in such a way that P− = 0 corresponds to the unpolarized beam.
Amplitudes |Aλ1λ2

| and their phases φλ1λ2
are obtained by crossing the corresponding expressions in Eqs. (9)–(15)

of Ref. [8]. Examples of kinematic distributions in the e+e− → ZH process can be found in Fig. 3; they show good
agreement between analytical parameterization and numerical computations and exhibit features similar to those seen
in decay in Fig. 14. Extension to higher spins follows the same logic and can be easily written using expressions in
Ref. [8], such as Eqs. (A1), (17), (21). Applications to spin-zero, -one, and -two particle production can be found in
Figs. 5 and 17.

3. The qq′ → V H process on LHC

To describe associated ZH and WH production in proton collisions we modify Eq. (A2) to account for the fact
that we now have quarks and antiquarks colliding and that the energy and luminosity distribution of these partonic
collisions is described by products of parton distribution functions. The probability distribution for pp → ZH and
pp → WH processes is described by

dΓ(ŝ, Y, ~Ω)

dŝ dY d~Ω
∝

∑

q,q̄′

Pqq′(ŝ, ~Ω)× P (ŝ)× Fqq′(ŝ, Y ) , (A3)

where the sum runs over the five qq̄ flavors in the Z∗ → ZH production and over 12 qq̄′ flavors in the W ∗ → WH

process, ŝ = m2
VH , Pqq′(ŝ, ~Ω) is the amplitude squared from Eq. (A2), P (ŝ) is the kinematic factor [11], and Fqq′(ŝ, Y )

is the partonic luminosity function

Fqq′(ŝ, Y ) = fq(x+, ŝ)fq̄′(x−, ŝ) + (x+ ↔ x−) , (A4)

where x± =
√

ŝ/s e±Y . All angular variables are defined in the partonic center-of-mass frame.
Sample kinematic distributions are shown in Fig. 18. There is a good agreement between numerical simulations

and analytic probability distributions. We note that continuous distribution of the invariant mass mVH =
√
ŝ scans

the range of a few hundred GeV which is in the ballpark of center-of-mass energies proposed for e+e− colliders.

4. Higgs production in association with two jets

For studies of the Higgs boson production in association with two jets for both weak boson fusion and gluon fusion
see e.g. Ref. [16]. Analytic parameterization of the probability distribution in this case is more involved because the
two vector bosons have negative virtualities q2i < 0, and because parton distribution functions of a proton need to be
incorporated. Although a partial analytic description of probability distributions is available, see e.g. Ref. [19], in this
analysis we employ the matrix elements for pp → H +2j as implemented in the JHU generator. The matrix elements
likelihood approach describes the full kinematics of the two jets and the Higgs bosons candidate as a single function
without information about the decay of the Higgs. On the other hand, all correlations between the Higgs momentum
and momenta of the two jets are included. In Fig. 19 we show representative distributions of di-jet observables mjj ,
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(0+, red open circles), pseudoscalar (0−, blue diamonds), and two mixed states corresponding to fa3 = 0.5 with φa3 = 0 (green
squares) and π/2 (magenta points).
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and two mixed states corresponding to fa3 = 0.5 with φa3 = 0 (green squares) and π/2 (magenta points).

∆ηjj , ∆φjj , and
√

|q2V | of the two vector bosons calculated from momenta of the jets and Higgs candidate, for the
scalar, pseudoscalar, and mixed states produced in weak boson fusion. The same distributions are shown in Fig. 20
for Higgs boson production in gluon fusion. Several observables, in particular ∆φjj , exhibit differences between the
scalar and pseudoscalar couplings. The enhanced production of events with anomalous couplings at higher values of
|q2i | in WBF is similar to the V H process; this effect is significantly weaker in the gluon fusion.

5. Background

Parameterization of background matrix elements is important for signal-to-background separation. Indeed, this was
a crucial part of the Higgs boson discovery by the CMS collaboration [2] with the MELA technique which identifies
kinematic differences between dilepton pairs produced in the decay of the Higgs boson via H → ZZ∗ → 4ℓ and in qq̄
annihilation, qq → ZZ∗/Zγ∗, to distinguish them from each other. We use MCFM generator [54] matrix elements for
both qq → ZZ∗/Zγ∗/Zγ and gg → ZZ∗ processes to describe relevant backgrounds [37]. We also provide interference
of gg → ZZ∗ [54] and gg → H∗ → ZZ [37] for optimal analysis above the ZZ threshold, such as a study suggested in
Refs. [55, 56]. We note that analytic parameterization of the qq̄ → ZZ∗/Zγ∗ background is also available [31] and we
also use it for the background parameterization. A similar approach to qq̄ → ZZ∗/Zγ∗ background is also discussed
in Ref. [57].

6. Analytic parameterization of parton distribution functions

Calculation of both signal and background processes at a hadron collider involves parton distribution functions
(PDFs). These functions are usually calculated numerically by solving Altarelli-Parisi equations using dedicated
numerical programs. It may be desirable, in some cases, to have an analytic parameterization of the parton distribution
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FIG. 21: Distribution of 2mFqq′(m
2, Y = 0) defined in Eq. (A4) for proton-proton collision energies of 14 TeV as a function

of the parton invariant mass m. Curves show analytical approximation and points show exact numerical calculation using
CTEQ6L1 PDFs, qq′ combinations suppressed by Cabibbo-Kobayashi-Maskawa (CKM) mechanism are not shown. On the
right plot, ratio between the numerical and analytical parameterizations is shown. An equivalent factor for gluon-fusion
production is shown for comparison and is scaled by a factor of 0.1.

functions. For example, such parameterization may allow faster computations or even analytic integrations of the
products of PDFs and partonic cross sections. Parton distribution functions fq(x, ŝ) are extracted from cteq6 PDF
set [58, 59] and are parameterized analytically using polynomial and exponential functions in the relevant range of x
with coefficients that are also functions of ŝ [60, 61]. The resulting set of analytically-parameterized CTEQ6L1 PDFs
can be found in Ref. [37]. The partonic luminosity functions from Eq. (A4) are shown in Fig. 21.

Appendix B: Statistical Approaches

The ultimate goal of the analysis described in this paper is the measurement of all anomalous couplings of the
Higgs bosons to the gauge bosons. This can be accomplished by performing a multi-dimensional fit to match observed
kinematic distributions in various processes to theory predictions. Theoretical input to the fit involves real parameters

such as for example ~ζ = {fa2, φa2, fa3, φa3, ...} in Eq. (4) which, once known, can be used to derive the couplings. To
set up a fit process, we follow Ref. [7] and introduce the likelihood function for N candidate events

L = exp (−nsig − nbkg)

N
∏

i

(

nsig × Psig(~xi; ~ζ) + nbkg × Pbkg(~xi)
)

, (B1)

where nsig is the number of signal events, nbkg is the number of background events, and P(~xi; ~ζ) is the probability
density function for signal or background. Each candidate event i is characterized by a set of eight observables, for

example ~xi = {m1,m2, ~Ω}i as defined in Fig. 1. The number of observables and free parameters can be extended or
reduced, depending on the desired fit.
The advantage of this approach is that the likelihood L in Eq. (B1) can be maximized for a large set of parameters

in the most optimal way without losing information. The disadvantage is the difficulty to describe the detector
response and background parameterization in a multi-dimensional space. In addition, convergence of the fit for a
limited number of events may be an issue as well.
Nonetheless, successful implementation can be achieved with certain approximations, for example by allowing for

a single anomalous coupling constant at a time. Consider a case where fa3 and φa3 are non-vanishing and write the
signal probability as

Psig(~xi; fa3, φa3) = (1 − fa3)P0+(~xi) + fa3P0−(~xi) +
√

fa3(1− fa3)Pint(~xi;φa3) , (B2)

where Pint describes interference of 0+ (g1) and 0− (g4) terms.
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FIG. 22: Distribution of D0− for generated events in three topologies: H → ZZ → 4ℓ (left), e+e− → Z∗ → ZH → (ℓℓ)(bb̄)
(middle) at

√
s = 250 GeV, and qq̄ → Z∗ → ZH → (ℓℓ)(bb̄) (right) at a 14 TeV pp collider. Four processes are shown: SM

scalar (0+, red open circles), pseudoscalar (0−, blue diamonds), and two mixed states corresponding to fa3 = 0.5 with φa3 = 0
(green squares) and π/2 (magenta points). Also shown is the fa3 = 0.5 sample with no interference between the scalar and
pseudoscalar terms simulated (black crosses). Events are shown after selection requirements, which have different efficiencies
for 0+ and 0− samples in the qq̄ → Z∗ → ZH channel.

-0D
0 0.2 0.4 0.6 0.8 1

-210

-110

-0D
0 0.2 0.4 0.6 0.8 1

-510

-410

-310

-210

-110

bkgD
0 0.2 0.4 0.6 0.8 1

-410

-310

-210

-110

FIG. 23: Distribution of D0− for generated events in two VBF-like topologies: V ∗V ∗ → H + 2 jets (left) and gg → H +
2 jets (middle), with H → ZZ∗ as an example. Four processes are shown: SM (0+, red open circles), pseudoscalar (0−, blue
diamonds), and two mixed states corresponding to fa3 = 0.5 with φa3 = 0 (green squares) and π/2 (magenta points). Also
shown is the fa3 = 0.5 sample with no interference between the scalar and pseudoscalar terms simulated (black crosses). Right:
Distribution of Dbkg for VBF topology considering V ∗V ∗ → H + 2 jets as signal and gg → H + 2 jets as background. The
following processes are shown: WBF 0+ (red solid circles), WBF 0− (blue solid diamonds), SBF 0+ (red open circles), SBF 0−

(blue open diamonds), ZZ + 2 jets background (black squares). Events are shown after selection requirements.

In this simplified approach, we consider a single observable ~xi = {D0−}i and one free parameter ~ζ = {fa3}. A
kinematic discriminant is constructed from the ratio of probabilities for the SM signal and alternative signal 0−

hypothesis

D0− =
P0+

P0+ + P0−
=

[

1 +
P0−(m1,m2, ~Ω)

P0+(m1,m2, ~Ω)

]−1

. (B3)

We now make a technical comment that allows us to simplify fitting for fa3 when distribution of D0− is employed.
Consider a CP -mixed case. The matrix element squared, which is used to generate events for the D0− distribution,
contains the square of CP -even part, the square of CP -odd part, and the interference of the two, as shown in Eq. (B2).
We observe that the interference part does not contribute to the distribution of D0− variable; the illustration for five
production and decay processes considered in this paper can be found in Figs. 22 and 23. This allows us to set up
a simple procedure by generating fa3-independent CP -even and CP -odd events once and then combining them in
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FIG. 24: Distribution of D0h+ (left), Dint (middle), and DΛ1 (right) for generated events in the H → ZZ → 4ℓ process. Four
scenarios are shown. Left and middle plots: SM scalar (0+, red open circles), BSM scalar (0+h , blue diamonds), and two mixed
states corresponding to fa2 = 0.5 with φa2 = 0 (green squares) and π (magenta points). Right plot: SM scalar (0+, red open
circles), BSM scalar (fΛ1 = 1, blue diamonds), and two mixed states corresponding to fΛ1 = 0.5 with φΛ1 = 0 (green squares)
and π (magenta points).

appropriate proportion. This feature is unique for fa3 measurements. As long as only a limit is set on fa3, such an
analysis may be sufficient. Note that this approach is equivalent to averaging over all possible phases of the amplitude,
φa3, which is generally unknown until measured.
It is possible to extend the above approach and create a discriminant, DCP , which is sensitive to interference of the

0+ (g1) and 0− (g4) terms

DCP =
Pint(m1,m2, ~Ω;φa3)

P0+(m1,m2, ~Ω) + P0−(m1,m2, ~Ω)
. (B4)

This analysis includes two observables ~xi = {D0− , DCP}i and one parameter ~ζ = {fa3} for a given value of φa3. Such
an approach can be also applied to other cases, such as a measurement of the parameter fa2, where the Pint cannot
be omitted. The corresponding discriminants are called D0h+ and Dint, instead of D0− and DCP ; their distributions
are shown in Fig. 24. The strong interference effect is visible in Fig. 24 and the full treatment Eq. (B2) is needed.
Finally a discriminant DΛ1 is also shown in Fig. 24 which is designed to separate the g1(q

2
1 , q

2
2) = −g′′1 × (q21 + q22)/Λ

2
1

anomalous coupling term from the Standard Model coupling.
Equation (B2) can be easily extended to an arbitrary number of contributing amplitudes. For example, an arbitrary

complex phase φa3 can be easily incorporated noting that Pint(~xi;φa3) = Pint(~xi;φa3 = 0)× cosφa3 + Pint(~xi;φa3 =
π/2)× sinφa3. This and three discriminants D0− , DCP and D⊥

CP computed in Eq. (B4) for φa3 = 0 and π/2, provide
full information for the measurement of fa3 and φa3 simultaneously. Equivalently, three terms in Eq. (B2) would
be extended to six terms when interference of three amplitudes is considered, such as simultaneous measurement
of fa2 and fa3 with real couplings. The number of terms is increased to nine when arbitrary phases φa2 and φa3

are considered. The number of relevant discriminants is also increased with one discriminant for each term in the
probability distribution, except for the Standard Model coupling. However, some discriminants carry most of the
relevant information and a reduced set may be sufficient, as we illustrate in Sec. IVB. Nonetheless, the present goal
is to test the presence of one anomalous coupling at a time, and the approach with one or two optimal discriminants
is sufficient for many of such measurements.
We also comment on the technical implementation of Eq. (B2) and its extensions to a larger number of interfering

amplitudes. Each probability distribution as a function of observables (such as one or two discriminants) can be
easily obtained with MC simulation including all detector effects for signal and full parameterization for background.
It is sufficient to generate only as many signal MC samples as there are terms in the equation, three in the case of
Eq. (B2). Interference parameterization can be easily extracted from the combination of the mixed and pure samples
following the same Eq. (B2). For signal, it is also possible to generate just one MC sample covering the phase-space of
observables, and then re-weight the MC parameterization using the matrix element ratios discussed in Appendix A.
Background treatment requires special consideration. The set ~xi can be extended to include observables discrimi-

nating against background, such as reconstructed Higgs boson invariant mass. For studies presented here, we adopt
a simplified approach where instead of including Higgs boson invariant mass we fix the number of background events
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FIG. 25: Distributions of the observables in the e+e− → ZH analysis at
√
s = 250 GeV, from left to right: cos θ1, cos θ2,

and Φ. Points (red) show simulated events for the SM Higgs boson with curves showing projections of analytical distributions.
Histograms (black) show background distributions. Distributions before (solid) and after (dashed) detector acceptance effects
are shown.

nbkg to expected yields. Nonetheless, in some cases an effective background suppression can be achieved with a matrix
element approach as well. In such a case we employ a discriminant optimal for background suppression

Dbkg =

[

1 +
Pbkg(m1,m2, ~Ω)

P0+(m1,m2, ~Ω)

]−1

(B5)

and extend the set of observables to include ~xi = {Dbkg, D0− , ...}i. We note that this is needed only in the approach
employing discriminants. In the case of multidimensional fits, complete kinematic information is already contained
in the set of observables.
To illustrate the use of Dbkg, we show the separation of the gluon-fusion “background” and the weak-boson “signal”

in H + 2j events in Fig. 23. A similar approach can be used in the analysis of V H production with the decay V → 2
jets, where the gluon fusion process H + 2 jets is treated as a background. Alternatively, extraction of fa3 in gluon
fusion should treat the WBF process as a background.
The above approaches with kinematic discriminants simplify parameterization of detector effects and backgrounds.

The idea behind those approaches is to store most relevant information in as few observables as possible, simplifying
the analysis and focussing on the most interesting measurements. A complementary approach is to try to describe
both detector effects and backgrounds in a multi-dimensional space of observables. This approach allows the full
multi-parameter implementation in Eq. (B1). For the final states with leptons, the resolution effects are typically
small and can be ignored for most of the observables. When such effects become important, detector transfer functions
between the ideal and the reconstructed observables can in principle be incorporated into the probability distributions.
The non-uniform reconstruction efficiency can be modeled with the acceptance function G which enters the Psig

parameterization and is given by the step-function

G(m1,m2, ~Ω) =
∏

ℓ

θ(|ηmax| − |ηℓ(m1,m2, ~Ω)|) , (B6)

where ηℓ = ln cot(θℓ/2) is the pseudorapidity of a lepton and |ηmax| is the maximal pseudorapidity in reconstruction.
We also assume that the detection efficiency does not change within the detector acceptance, otherwise G is multiplied
by the non-uniform function. We illustrate the effect on observables in the e+e− → ZH → ℓℓH analysis at

√
s =

250 GeV in Fig. 25, where the acceptance function from Eq. (B6) is implemented analytically.
Parameterization of background distributions, Pbkg, with multiple observables is also possible analytically. For

example, in the H → ZZ∗ → 4f analysis, parameterization of the qq̄ → ZZ∗/Zγ∗ process is available in Ref. [31],
and detector effects can be included in a manner similar to what we described for the signal. Alternatively, a multi-
dimensional template histogram can be used in place of such parameterization, potentially with proper smoothing of
the distributions if there are sufficient statistics of simulated events. We have investigated both of these approaches for
signal and background parameterization and found both of them feasible. However, some of the technical limitations
include normalization of probabilities in multidimensional space, which may slow down the data analysis considerably.
Therefore, for multi-parameter fits presented in this paper, we employ a simplified approach when both acceptance
functions, G, and background distributions, Pbkg, are approximated with analytical functions describing generated
distributions in either one or two dimensions, see for example Fig. 26. The results of such studies are verified to
give correct expectations for measurement precision by comparing to the expectations without detector effects or
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FIG. 26: Distributions of various observables (m1, m2, cos θ1, cos θ2, Φ, Φ1, and cos θ∗) in the H → ZZ∗ → 4ℓ analysis
at the LHC. Open red points show simulated events for the SM Higgs boson with curves showing projections of analytical
distributions. Solid black points show background distributions with curves showing projections of analytical parameterization.
Distributions before (circles) and after (squares) detector acceptance effects are shown.

background (optimistic), and with the full treatment of detector effects and background using discriminant approach
as in Eq. (B3), which serve as two bounds of expected performance. In most cases, all three results provide similar
expectations and we quote results from the multi-parameter fit. When analytical parameterization is not readily
available, we quote results from the discriminant approach.
So far we have discussed the case of spin-zero boson, but the tools and ideas presented in this paper can be extended

to any spin-parity study, such as multi-parameter fits of a spin-two hypothesis. In such a case, non-trivial cos θ∗ and Φ1

distributions appear and depend on the production mechanism. It is desirable to extend the matrix element approach
in such a way that it does not depend on the production model of a particle with non-zero spin but considers only
its decay. This feature can be easily achieved by considering the unpolarized X-boson production by either averaging
over the spin degrees of freedom of the produced X-boson or, equivalently, integrating over the two production angles
cos θ∗ and Φ1, defined in Fig. 1, in the probability distribution P [7, 8]. This leads to the following expression for the
spin-averaged matrix element squared for the decay of a new boson X

∫

dΦ1d cos θ
∗ P(m1,m2, ~Ω) . (B7)

This method applies to any possible hypothesis with non-zero spin and small residual effects arising from detector
acceptance can be addressed in experimental analysis. We provide tools that allow one to pursue this approach using
both analytic and numerical computations of the probability distribution P [37].
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